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Overview

● Research at Google

● What do users want from a music service?

● Music similarity using embeddings
○ Audio (content based)
○ User modeling (collaborative filtering)

● Structured data (Knowledge graph / Freebase)

● Casting recommendation as a search problem.
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Research Collaboration with Google
● “Hybrid Research Model”:  blur the line between research

 and engineering; focus on high risk projects with big potential impact.

● Research areas (# publications)
Algorithms and Theory (368)
AI and Machine Learning (386)
Data Management (92)
Data Mining (148)
Distr. Systems and Parallel Computing (127)
Economics and Electronic Commerce (108)
Education Innovation (20)
General Science (89)
Hardware and Architecture (47)
HCI and Visualization (286)

● University collaborations
○ Internships for students and jobs for recent grads www.google.

com/about/careers/students/
○ Google Research Awards for faculty 

research.google.com/university/relations/research_awards.html

Information Retrieval and the Web (182)
Machine Perception (226)
Machine Translation (938)
Mobile Systems (47)
Natural Language Processing (245)
Networking (109)
Security, Cryptography, and Privacy (176)
Software Engineering (63)
Software Systems (134)
Speech Processing (102)

http://www.google.com/about/careers/students/
http://www.google.com/about/careers/students/
http://www.google.com/about/careers/students/
http://research.google.com/university/relations/research_awards.html
http://research.google.com/university/relations/research_awards.html
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2003: iTunes
Store OpensMp3 Revolution and iPod



deck@google.com

Pandora streaming statistics
From iPod to Online Streaming
    …. From Desktop to Mobile
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Lean back 
(low friction)

Lean forward 
(high engagement)
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Musicians
Knowledge and Connections

Users
Collaborative Filtering

Music
Audio Signal Processing
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Collaborative filtering

Jane likes the Thelonious Monk's 
album Straight, No Chaser"  

Can we use this info to "filter" for 
other music Jane likes?



deck@google.com

Collaborative filtering
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Matrix factorization for recommendation

Given a factorized ratings matrix M ≈ U × V:
● Take embedding vector u for a user, v for an item.
● Score by d(u, v), usually dot product.

Intuition:
● u∙v is the reconstructed matrix’s guess if the user likes the item.
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Embedding spaces: SVD vs WALS
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WALS > SVD

WALS

SVD

SVD WALS

WALS effects:
● Weakens popular songs’ ability to link 

together less-popular ones.
● Helps combat correlated negatives: 

ABBA and AC/DC.
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1. Dot product
u∙v
Tends to be biased toward popular items.

2. Cosine similarity
u∙v / ||u||∙||v||
Tends to be biased toward niche items.

3. Limited inner product
u∙v / ||u||∙max(||u||, ||v||)
Popularity of seed informs ranking.
    Grateful Dead ⇨ Phish
    Jerry Garcia Band ⇨ Phil Lesh

Similarity Functions For Recommenders
query
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Arithmetic on embeddings: merging and steering

Michael Jackson -  Lady Gaga + Prince = ???
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Radio from 
Michael Jackson
Thriller
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Radio from 
Michael Jackson
Thriller 

Let's try to move it 
towards 70s/80s 
Michael Jackson.
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Michael Jackson
+ The Jacksons
+ Prince
- Lady Gaga 
- Mariah Carey 
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Michael Jackson
+ The Jacksons
+ Prince
- Lady Gaga 
- Mariah Carey 

Add a couple more 
thumbs ups and 
downs.
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Composite Radio 
from Michael 
Jackson Thriller.

Michael Jackson
+ The Jacksons
+ Prince
+ The Jackson 5
- Lady Gaga 
- Mariah Carey
- Black Eyed 
Peas
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Basic Deep Learning Architecture

“ReLU” = rectified linear transformation
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Inference
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Clusters in audio 
feature space

Semantic clusters 
“Reggae”

Learning

http://www.youtube.com/watch?v=Lys_UW7TMc0
http://www.youtube.com/watch?v=wIdOqKxhzzQ
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Using audio in two-stage scoring

Collaborative filtering + audio.Collaborative filtering only.

http://www.youtube.com/watch?v=fwPA-S7rJ_o
http://www.youtube.com/watch?v=n1gL_3Jcl2s
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Knowledge and Connections

Knowledge Panel result from searching for "Gorillaz”
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Freebase Music Schema

Jamie Hewlett

Person

Musician

Damon Albarn

Gorillaz

Blur

Artist

Has Band Member

Has Band Member

Has Band Member

Is A
Is A Is A

Is A

Is A
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Playlist: Songs by Artists who had a member die in 2012

Adam YauchBeastie Boys

Has Band Member

(You've Gotta) 
Fight for Your Right 2012-05-04

Date of DeathHas Track

Davy JonesThe MonkeesI'm A Believer 2012-02-29

Robin GibbThe Bee GeesStayin' Alive 2012-05-20

Bob WelchFleetwood MacGo Your Own Way 2012-06-07

Freebase is a public dataset, so try it yourself!
http://tinyurl.com/bj4bkdv
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[1] TRACK /id/t120
Pixies “Gigantic”
ROCK, ALT-INDIE

[2] TRACK /id/t250
John Coltrane, “Lazy 
Bird” JAZZ, BEBOP

[3] ARTIST  /id/a212
Gilberto Gil, 
JAZZ, SAMBA

ID Term Document

1 TRACK 1,2

2 JAZZ 2,3 

3 John 1

4 /id/t250 2

● Map document terms onto documents. 

● Fast retrieval of candidates for a query.

● Candidates are then ranked by scoring 
on popularity, relevance, etc.

Inverted search index
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Using a search index for music recommendation

● Index both text and embeddings

● Score based on
○ embeddings similarity 
○ textual similiarity

● Several strategies for limiting retrieval
○ Popularity tokens (top_track_by_artist)
○ Locality sensitive hashing tokens

TRACK [2]
Lazy Bird /id/250
Blue Train /id/B983
John Coltrane /id/A654

jazz, bebop, laid back

“John Coltrane was born…”

<CF embedding>
<Audio embedding>
Popularity: .012
top_track_by_artist
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Conclusions

● Catalog access is now a commodity
● “Lean forward” vs “Lean back”
● Exploration vs exploitation

● Hybrid content / collaborative filtering approach
● Structured factural data important
● Search index provides unified approach
● User interface design remains a challenge

● Many open questions for neuroscience, cognitive psychology, 
music tech. 
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Thanks for your attention!

● Questions: deck@google.com


