

Music recommendation and discovery at scale

Douglas Eck Research Scientist, Google Mountain View, CA, USA

Overview

- Research at Google
- What do users want from a music service?
- Music similarity using embeddings
 - Audio (content based)
 - User modeling (collaborative filtering)
- Structured data (Knowledge graph / Freebase)
- Casting recommendation as a search problem.

deck@google.com

Research Collaboration with Google

- "Hybrid Research Model": blur the line between research and engineering; focus on high risk projects with big potential impact.
- Research areas (# publications)

Algorithms and Theory (368) Al and Machine Learning (386) Data Management (92) Data Mining (148) Distr. Systems and Parallel Computing (127) Economics and Electronic Commerce (108) Education Innovation (20) General Science (89) Hardware and Architecture (47) HCI and Visualization (286)

Information Retrieval and the Web (182) Machine Perception (226) Machine Translation (938) Mobile Systems (47) Natural Language Processing (245) Networking (109) Security, Cryptography, and Privacy (176) Software Engineering (63) Software Systems (134) Speech Processing (102)

- University collaborations
 - Internships for students and jobs for recent grads <u>www.google.</u> <u>com/about/careers/students/</u>
 - Google Research Awards for faculty <u>research.google.com/university/relations/research_awards.html</u>

From iPod to Online Streaming From Desktop to Mobile

Pandor	a streaming sta	tistics
	FY3Q12	<u>FY3Q11</u>
Listener Hours (billions)	2.1	1.0
Active Users (millions)	40.0	24.0
Platform Hours	-	
Mobile	70%	52%
Non-mobile	30%	48%

deck@google.com

Lean back (low friction)

Lean forward (high engagement)

Users Collaborative Filtering

Musicians *Knowledge and Connections*

Music Audio Signal Processing

Collaborative filtering

Jane likes the Thelonious Monk's album Straight, No Chaser"

Can we use this info to "filter" for other music Jane likes?

Customers Who Bought This Item Also Bought

Monk's Dream > Thelonious Monk ***** (25) Audio CD \$8.30

Mingus Ah Um Charles Mingus ***** (60) Audio CD \$6.88

Criss Cross Thelonious Monk (15) Audio CD \$8.24

Time Out Dave Brubeck ****** (277) Audio CD \$6.73

Giant Steps John Coltrane (142) Audio CD \$7.99

Page 1 of 17

Collaborative filtering

Does Jane like Adele?

Matrix factorization for recommendation

Given a factorized ratings matrix $M \approx U \times V$:

- Take embedding vector *u* for a user, *v* for an item.
- Score by d(*u*, *v*), usually dot product.

Intuition:

• $u \cdot v$ is the reconstructed matrix's guess if the user likes the item.

Google

Embedding spaces: SVD vs WALS

SVD

WALS

WALS > SVD

WALS effects:

- Weakens popular songs' ability to link together less-popular ones.
- Helps combat correlated negatives: ABBA and AC/DC.

Recommendations for Coldplay

#	SVD	WALS
1	Coldplay	Coldplay
2	Faultline	Snow Patrol
3	Oasis	Keane
4	U2	The Fray
5	The Fray	U2
6	The Cranberries	Maroon 5
7	Snow Patrol	Oasis
8	Elton John	James Blunt
9	Creeper Lagoon	John Mayer
10	Bob Marley	Travis
11	Five For Fighting	Kings Of Leon
12	Kansas	David Gray
13	Frank Sinatra	Death Cab for Cutie
14	John Lennon	Damien Rice 😽
15	Moby	Faultline
16	Journey	Aqualung
17	Morten Harket	R.E.M.
18	Nelly Furtado	Mat Kearney
19	Johnny Cash	Five For Fighting
20	Phil Collins	Foo Fighters

Similarity Functions For Recommenders

1. Dot product

U·V

Tends to be biased toward popular items.

- 2. Cosine similarity $u \cdot v / ||u|| \cdot ||v||$ Tends to be biased toward niche items.
- Limited inner product

 u·v / ||u||·max(||u||, ||v||)
 Popularity of seed informs ranking.
 Grateful Dead ⇒ Phish
 Jerry Garcia Band ⇒ Phil Lesh

Arithmetic on embeddings: merging and steering

Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov Google Inc., Mountain View, CA tmikolov@google.com

Greg Corrado Google Inc., Mountain View, CA gcorrado@google.com Kai Chen Google Inc., Mountain View, CA kaichen@google.com

Jeffrey Dean Google Inc., Mountain View, CA jeff@google.com

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

Relationship	Example 1
France - Paris	Italy: Rome
big - bigger	small: larger
Miami - Florida	Baltimore: Maryland
Einstein - scientist	Messi: midfielder
Sarkozy - France	Berlusconi: Italy
copper - Cu	zinc: Zn
Berlusconi - Silvio	Sarkozy: Nicolas
Microsoft - Windows	Google: Android
Microsoft - Ballmer	Google: Yahoo
Japan - sushi	Germany: bratwurst

Michael Jackson - Lady Gaga + Prince = ???

Radio from Michael Jackson Thriller

Radio from Michael Jackson Thriller

Let's try to move it towards 70s/80s Michael Jackson.

Michael Jackson

- + The Jacksons
- + Prince
- Lady Gaga
- Mariah Carey

Michael Jackson

- + The Jacksons
- + Prince
- Lady Gaga
- Mariah Carey

Add a couple more thumbs ups and downs.

Composite Radio from Michael Jackson Thriller.

Michael Jackson

- + The Jacksons
- + Prince
- + The Jackson 5
- Lady Gaga
- Mariah Carey
- Black Eyed

Peas

0	Michael Jackson - Thriller - 04 - Thriller
1	The Jacksons - Victory - 08 - Body
2	PRINCE - Sign 'O' The Times - 15 - It's Gonna Be A Beautiful Night (Live LP Version)
3	Kool & The Gang - Celebrate! - 01 - Celebration
4	Earth, Wind & Fire - Greatest Hits - 08 - Serpentine Fire
5	Kool & The Gang - The Very Best Of Kool & The Gang - 13 - Joanna (Single Version)
6	The Jacksons - Triumph - 01 - Can You Feel It
7	Michael Jackson - Off the Wall - 05 - Off The Wall
8	Stevie Wonder - Song Review: A Greatest Hits Collection - 16 - Do I Do (1982 Musiquarium Version)
9	Michael Jackson - Off the Wall - 04 - Get On The Floor
10	Earth, Wind & Fire - Greatest Hits - 06 - Sing A Song
11	Commodores - The Ultimate Collection: The Commodores - 14 - Lady (You Bring Me Up)
12	Stevie Wonder - Number 1's - 15 - That Girl

Basic Deep Learning Architecture

Features

Inference

Using audio in two-stage scoring

Collaborative filtering only.

Collaborative filtering + audio.

Knowledge and Connections

Gorillaz

Band

Gorillaz are an English musical and visual project created in 1998 by Damon Albarn and Jamie Hewlett. The project consists of Gorillaz itself and an extensive fictional universe depicting a "virtual band" of cartoon characters. Wikipedia

Members: Damon Albarn, Jamie Hewlett, More

Awards: Grammy Award for Best Pop Collaboration with Vocals, More

Origin: London, United Kingdom, Essex, United Kingdom

Record labels: Universal Music Group, EMI, Geffen Records, Virgin Records, Parlophone, Def Jam Recordings

Songs

Clint Eastwood	2001	Gorillaz	
Feel Good Inc.	2005	Demon Days	
Dirty Harry	2005	Demon Days	
19/2000			
On Melancholy Hill	2010	Plastic Beach	

Albums

Beach

2010

2D

Plastic Demon Days 2005

Gorillaz 2001

The Fall 2010

The Singles Collectio... 2011

People also search for

Niccals

De La Soul

Knowledge Panel result from searching for "Gorillaz"

Freebase Music Schema

Playlist: Songs by Artists who had a member die in 2012

Freebase is a public dataset, so try it yourself! http://tinyurl.com/bj4bkdv

[1] TRACK /id/t120 Pixies "Gigantic" ROCK, ALT-INDIE

[2] TRACK /id/t250 John Coltrane, "Lazy Bird" JAZZ, BEBOP

[3] ARTIST /id/a212 Gilberto Gil, JAZZ, SAMBA

Inverted search index

ID	Term	Document
1	TRACK	1,2
2	JAZZ	2,3
3	John	1
4	/id/t250	2

- Map document terms onto documents.
- Fast **retrieval** of candidates for a query.
- Candidates are then ranked by **scoring** on popularity, relevance, etc.

Using a search index for music recommendation

- Index both text and embeddings
- Score based on
 - embeddings similarity
 - textual similiarity
- Several strategies for limiting retrieval
 - Popularity tokens (top_track_by_artist)
 - Locality sensitive hashing tokens

TRACK [2] Lazy Bird /id/250 Blue Train /id/B983 John Coltrane /id/A654

jazz, bebop, laid back

"John Coltrane was born ... "

<CF embedding> <Audio embedding> Popularity: .012 top_track_by_artist

Bibliography

- Collaborative Filtering for Implicit Feedback Datasets. Y. Hu, Y. Koren, C. Volinsky. ICDM 2008.
- WSABIE: scaling up to large vocabulary image annotation. J. Weston, S. Bengio, N. Usunier. IJCAI 2011.
- Efficient Estimation of Word Representations in Vector Space. T. Mikolov, K. Chen, G. Corrado, J. Dean. arXiv:1301.3781 2013.
- DeViSE: A Deep Visual-Semantic Embedding Model. A. Frome, G. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, T. Mikolov NIPS (2013).
- WTA The Power of Comparative Reasoning, J. Yagnik, D. Strelow, D. Ross, R. Lin International Conference on Computer Vision, IEEE (2011).
- The Need for Music Information Retrieval with User-Centered and Multimodal Strategies. C. C.S. Liem, M. Müller, D. Eck, G. Tzanetakis, A. Hanjalic. MIRUM '11, ACM (2011).
- Temporal pooling and multiscale learning for automatic annotation and ranking of music audio P. Hamel, S. Lemieux, Y. Bengio, D. Eck. ISMIR (2011).
- Automatic generation of social tags for music recommendation. D. Eck, P. Lamere, T. Bertin-Mahieux, S. Green. NIPS (2008).
- Aggregate features and AdaBoost for music classification. J. Bergstra, N. Casagrande, D. Erhan, D. Eck, B Kégl. Machine learning 65 (2-3), 473-484, (2006).
- Sound Retrieval and Ranking Using Sparse Auditory Representations. R. Lyon, M. Rehn, S. Bengio, T. Walters, G. Chechik. Neural Computation, vol. 22, 2390-2416 (2010)..
- Building Musically-relevant Audio Features through Multiple Timescale Representations.
 P. Hamel, Y. Bengio, D. Eck ISMIR, 553-558 (2013).
- Large Scale Distributed Deep Networks. J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng.

Conclusions

- Catalog access is now a commodity
- "Lean forward" vs "Lean back"
- Exploration vs exploitation
- Hybrid content / collaborative filtering approach
- Structured factural data important
- Search index provides unified approach
- User interface design remains a challenge
- Many open questions for neuroscience, cognitive psychology, music tech.

Thanks for your attention!

• Questions: deck@google.com

